Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Viruses ; 15(5)2023 05 14.
Article in English | MEDLINE | ID: covidwho-20232730

ABSTRACT

Chikungunya virus (CHIKV) and Zika virus (ZIKV) are important disease-causing agents worldwide. Currently, there are no antiviral drugs or vaccines approved to treat these viruses. However, peptides have shown great potential for new drug development. A recent study described (p-BthTX-I)2K [(KKYRYHLKPF)2K], a peptide derived from the Bothropstoxin-I toxin in the venom of the Bothrops jararacussu snake, showed antiviral activity against SARS-CoV-2. In this study, we assessed the activity of this peptide against CHIKV and ZIKV and its antiviral action in the different stages of the viral replication cycle in vitro. We observed that (p-BthTX-I)2K impaired CHIKV infection by interfering with the early steps of the viral replication cycle, reducing CHIKV entry into BHK-21 cells specifically by reducing both the attachment and internalization steps. (p-BthTX-I)2K also inhibited the ZIKV replicative cycle in Vero cells. The peptide protected the cells against ZIKV infection and decreased the levels of the viral RNA and the NS3 protein of this virus at viral post-entry steps. In conclusion, this study highlights the potential of the (p-BthTX-I)2K peptide to be a novel broad-spectrum antiviral candidate that targets different steps of the replication cycle of both CHIKV and ZIKV.


Subject(s)
COVID-19 , Chikungunya Fever , Chikungunya virus , Viruses , Zika Virus Infection , Zika Virus , Animals , Chlorocebus aethiops , Humans , Zika Virus Infection/drug therapy , Zika Virus/genetics , Vero Cells , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Virus Replication , SARS-CoV-2 , Chikungunya virus/genetics , Peptides/pharmacology , Peptides/therapeutic use
2.
Front Immunol ; 14: 1129118, 2023.
Article in English | MEDLINE | ID: covidwho-2298964

ABSTRACT

Chikungunya fever (CHIKF) has spread to more than 100 countries worldwide, with frequent outbreaks in Europe and the Americas in recent years. Despite the relatively low lethality of infection, patients can suffer from long-term sequelae. Until now, no available vaccines have been approved for use; however, increasing attention is being paid to the development of vaccines against chikungunya virus (CHIKV), and the World Health Organization has included vaccine development in the initial blueprint deliverables. Here, we developed an mRNA vaccine using the nucleotide sequence encoding structural proteins of CHIKV. And immunogenicity was evaluated by neutralization assay, Enzyme-linked immunospot assay and Intracellular cytokine staining. The results showed that the encoded proteins elicited high levels of neutralizing antibody titers and T cell-mediated cellular immune responses in mice. Moreover, compared with the wild-type vaccine, the codon-optimized vaccine elicited robust CD8+ T-cell responses and mild neutralizing antibody titers. In addition, higher levels of neutralizing antibody titers and T-cell immune responses were obtained using a homologous booster mRNA vaccine regimen of three different homologous or heterologous booster immunization strategies. Thus, this study provides assessment data to develop vaccine candidates and explore the effectiveness of the prime-boost approach.


Subject(s)
Chikungunya Fever , Chikungunya virus , Viral Vaccines , Animals , Mice , Chikungunya virus/genetics , Viral Vaccines/genetics , Antibodies, Viral , Antibodies, Neutralizing
3.
Viruses ; 14(9)2022 09 10.
Article in English | MEDLINE | ID: covidwho-2143625

ABSTRACT

Chikungunya virus (CHIKV) is an arthropod-borne virus (arbovirus) transmitted by Aedes mosquitoes. The human infection usually manifests as a febrile and incapacitating arthritogenic illness, self-limiting and non-lethal. However, since 2013, CHIKV spreading through the tropics and to the Americas was accompanied by an increasing number of cases of atypical disease presentation, namely severe neuropathies and neonatal infection due to intrapartum vertical transmission. The pathophysiological mechanisms underlying these conditions have not been fully elucidated. However, arbovirus intrahost genetic diversity is thought to be linked to viral pathogenesis. To determine whether particular viral variants could be somehow associated, we analyzed the intrahost genetic diversity of CHIKV in three infected patients with neurological manifestations and three mothers infected during the intrapartum period, as well as their babies following vertical transmission. No statistically supported differences were observed for the genetic variability (nucleotide substitutions/gene length) along the genome between the groups. However, the newborn and cerebrospinal fluid samples (corresponding to virus passed through the placenta and/or the blood-brain barrier (BBB)) presented a different composition of their intrahost mutant ensembles compared to maternal or patient serum samples, even when concurrent. This finding could be consistent with the unidirectional virus transmission through these barriers, and the effect of selective bottlenecks during the transmission event. In addition, a higher proportion of defective variants (insertions/deletions and stop codons) was detected in the CSF and maternal samples and those were mainly distributed within the viral non-structural genes. Since defective viral genomes in RNA viruses are known to contribute to the outcome of acute viral infections and influence disease severity, their role in these atypical cases should be further investigated. Finally, with the in silico approach adopted, we detected no relevant non-conservative mutational pattern that could provide any hint of the pathophysiological mechanisms underlying these atypical cases. The present analysis represents a unique contribution to our understanding of the transmission events in these cases and generates hypotheses regarding underlying mechanisms, that can be explored further.


Subject(s)
Aedes , Chikungunya Fever , Chikungunya virus , Communicable Diseases , Animals , Brazil/epidemiology , Chikungunya virus/genetics , Codon, Terminator , Humans , Infant, Newborn , Nucleotides
5.
mBio ; 13(3): e0073122, 2022 06 28.
Article in English | MEDLINE | ID: covidwho-1865140

ABSTRACT

Chikungunya virus (CHIKV) is an arthritogenic reemerging virus replicating in plasma membrane-derived compartments termed "spherules." Here, we identify the human transmembrane protein CD81 as host factor required for CHIKV replication. Ablation of CD81 results in decreased CHIKV permissiveness, while overexpression enhances infection. CD81 is dispensable for virus uptake but critically required for viral genome replication. Likewise, murine CD81 is crucial for CHIKV permissiveness and is expressed in target cells such as dermal fibroblasts, muscle and liver cells. Whereas related alphaviruses, including Ross River virus (RRV), Semliki Forest virus (SFV), Sindbis virus (SINV) and Venezuelan equine encephalitis virus (VEEV), also depend on CD81 for infection, RNA viruses from other families, such as coronaviruses, replicate independently of CD81. Strikingly, the replication-enhancing function of CD81 is linked to cholesterol binding. These results define a mechanism exploited by alphaviruses to hijack the membrane microdomain-modeling protein CD81 for virus replication through interaction with cholesterol. IMPORTANCE In this study, we discover the tetraspanin CD81 as a host factor for the globally emerging chikungunya virus and related alphaviruses. We show that CD81 promotes replication of viral genomes in human and mouse cells, while virus entry into cells is independent of CD81. This provides novel insights into how alphaviruses hijack host proteins to complete their life cycle. Alphaviruses replicate at distinct sites of the plasma membrane, which are enriched in cholesterol. We found that the cholesterol-binding ability of CD81 is important for its function as an alphavirus host factor. This discovery thus broadens our understanding of the alphavirus replication process and the use of host factors to reprogram cells into virus replication factories.


Subject(s)
Chikungunya Fever , Chikungunya virus , Viruses , Animals , Chikungunya virus/genetics , Cholesterol/metabolism , Humans , Mice , Tetraspanins/metabolism , Virus Replication/genetics , Viruses/metabolism
6.
Vector Borne Zoonotic Dis ; 21(11): 900-909, 2021 11.
Article in English | MEDLINE | ID: covidwho-1532426

ABSTRACT

Background: A wide range of insect-specific viruses (ISVs) have been reported worldwide. There are no studies from India that have reported ISVs. The current study describes the identification of Phasi Charoen-like virus (PCLV) from Aedes aegypti mosquito-pools from six districts of Karnataka state, India. Materials and Methods: During the Chikungunya virus (CHIKV) outbreak in the Bangalore Urban district in 2019, using conventional PCR, it was found that both human and mosquito samples were positive for CHIKV. For retrieve the complete genome sequence, mosquito samples were subjected to next generation sequencing (NGS) analysis and PCLV was also found. During 2019, as part of a vector-borne disease surveillance, we received 50 mosquito pool samples from 6 districts of the state, all of them were subjected to NGS to identify PCLV. Results: The A. aegypti mosquito-pools samples were subjected to the NGS platform that led to identification of an ISV, PCLV. PCLV was identified in 26 A. aegypti mosquito-pools collected from 6 districts. We also found mixed infection of PCLV with the Dengue virus (DENV; genotypes 1 and 3) and CHIKV from five pools. The nucleotide identity for the L gene of Indian PCLV sequences ranged between 97.1% and 98.3% in comparison with the Thailand sequences. Conclusions: To the best of our knowledge, this is the first report of PCLV dual infection with DENV and CHIKV in India. The present study confirms the presence of PCLV in A. aegypti mosquitoes from Karnataka state. The study adds India in the global geographical distribution of PCLV.


Subject(s)
Aedes , Chikungunya virus , RNA Viruses , Animals , Chikungunya virus/genetics , India/epidemiology , Mosquito Vectors
7.
PLoS Pathog ; 17(1): e1009033, 2021 01.
Article in English | MEDLINE | ID: covidwho-1012135

ABSTRACT

The p53 transcription factor plays a key role both in cancer and in the cell-intrinsic response to infections. The ORFEOME project hypothesized that novel p53-virus interactions reside in hitherto uncharacterized, unknown, or hypothetical open reading frames (orfs) of human viruses. Hence, 172 orfs of unknown function from the emerging viruses SARS-Coronavirus, MERS-Coronavirus, influenza, Ebola, Zika (ZIKV), Chikungunya and Kaposi Sarcoma-associated herpesvirus (KSHV) were de novo synthesized, validated and tested in a functional screen of p53 signaling. This screen revealed novel mechanisms of p53 virus interactions and two viral proteins KSHV orf10 and ZIKV NS2A binding to p53. Originally identified as the target of small DNA tumor viruses, these experiments reinforce the notion that all viruses, including RNA viruses, interfere with p53 functions. These results validate this resource for analogous systems biology approaches to identify functional properties of uncharacterized viral proteins, long non-coding RNAs and micro RNAs.


Subject(s)
Communicable Diseases, Emerging/virology , RNA Viruses/metabolism , Signal Transduction/genetics , Tumor Suppressor Protein p53/metabolism , Chikungunya virus/genetics , Chikungunya virus/metabolism , Coronavirus/genetics , Coronavirus/metabolism , Ebolavirus/genetics , Ebolavirus/metabolism , Herpesvirus 8, Human/genetics , Herpesvirus 8, Human/metabolism , Humans , Influenza A virus/genetics , Influenza A virus/metabolism , Open Reading Frames , RNA Viruses/genetics , Tumor Suppressor Protein p53/genetics , Viral Nonstructural Proteins/metabolism , Zika Virus/genetics , Zika Virus/metabolism
8.
Viruses ; 12(12)2020 12 17.
Article in English | MEDLINE | ID: covidwho-979668

ABSTRACT

Viral entry is the first stage in the virus replication cycle and, for enveloped viruses, is mediated by virally encoded glycoproteins. Viral glycoproteins have different receptor affinities and triggering mechanisms. We employed vesicular stomatitis virus (VSV), a BSL-2 enveloped virus that can incorporate non-native glycoproteins, to examine the entry efficiencies of diverse viral glycoproteins. To compare the glycoprotein-mediated entry efficiencies of VSV glycoprotein (G), Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S), Ebola (EBOV) glycoprotein (GP), Lassa (LASV) GP, and Chikungunya (CHIKV) envelope (E) protein, we produced recombinant VSV (rVSV) viruses that produce the five glycoproteins. The rVSV virions encoded a nano luciferase (NLucP) reporter gene fused to a destabilization domain (PEST), which we used in combination with the live-cell substrate EndurazineTM to monitor viral entry kinetics in real time. Our data indicate that rVSV particles with glycoproteins that require more post-internalization priming typically demonstrate delayed entry in comparison to VSV G. In addition to determining the time required for each virus to complete entry, we also used our system to evaluate viral cell surface receptor preferences, monitor fusion, and elucidate endocytosis mechanisms. This system can be rapidly employed to examine diverse viral glycoproteins and their entry requirements.


Subject(s)
Gene Expression , Genetic Vectors/genetics , Glycoproteins/genetics , Vesicular stomatitis Indiana virus/genetics , Viral Envelope Proteins/genetics , Virus Internalization , Animals , Cell Line , Chikungunya virus/genetics , Chlorocebus aethiops , Cloning, Molecular , Ebolavirus/genetics , Gene Order , Genes, Reporter , Humans , Lassa virus/genetics , SARS-CoV-2/genetics , Time Factors , Vero Cells , Virus Replication
9.
Arch Med Res ; 52(1): 48-57, 2021 01.
Article in English | MEDLINE | ID: covidwho-893598

ABSTRACT

BACKGROUND: Ras-GTPase activating protein SH3-domain-binding proteins (G3BP) are a small family of RNA-binding proteins implicated in regulating gene expression. Changes in expression of G3BPs are correlated to several cancers including thyroid, colon, pancreatic and breast cancer. G3BPs are important regulators of stress granule (SG) formation and function. SG are ribonucleoprotein (RNP) particles that respond to cellular stresses to triage mRNA resulting in transcripts being selectively degraded, stored or translated resulting in a change of gene expression which confers a survival response to the cell. These changes in gene expression contribute to the development of drug resistance. Many RNA viruses, including Chikungunya (and potentially Coronavirus), dismantle SG so that the cell cannot respond to the viral infection. Non-structural protein 3 (nsP3), from the Chikungunya virus, has been shown to translocate G3BP away from SG. Interestingly in cancer cells, the formation of SG is correlated to drug-resistance and blocking SG formation has been shown to reestablish the efficacy of the anticancer drug bortezomib. METHODS: Chikungunya nsP3 was transfected into breast cancer cell lines T47D and MCF7 to disrupt SG formation. Changes in the cytotoxicity of bortezomib were measured. RESULTS: Bortezomib cytotoxicity in breast cancer cell lines changed with a 22 fold decrease in its IC50 for T47D and a 7 fold decrease for MCF7 cells. CONCLUSIONS: Chikungunya nsP3 disrupts SG formation. As a result, it increases the cytotoxicity of the FDA approved drug, bortezomib. In addition, the increased cytotoxicity appears to correlate to improved bortezomib selectivity when compared to control cell lines.


Subject(s)
Bortezomib/pharmacology , Chikungunya Fever/drug therapy , Chikungunya virus/genetics , Cytoplasmic Granules/metabolism , DNA Helicases/metabolism , Poly-ADP-Ribose Binding Proteins/metabolism , RNA Helicases/metabolism , RNA Recognition Motif Proteins/metabolism , Viral Nonstructural Proteins/metabolism , Animals , Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/therapy , Chikungunya Fever/metabolism , Chikungunya Fever/pathology , Chikungunya virus/metabolism , Chlorocebus aethiops , Cytoplasmic Granules/drug effects , Cytoplasmic Granules/pathology , DNA Helicases/genetics , Down-Regulation , Drug Resistance, Neoplasm , Female , HEK293 Cells , HeLa Cells , Humans , MCF-7 Cells , Poly-ADP-Ribose Binding Proteins/genetics , RNA Helicases/genetics , RNA Recognition Motif Proteins/genetics , Transfection , Vero Cells , Viral Nonstructural Proteins/administration & dosage , Viral Nonstructural Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL